
Consistent Multi-Robot Object Matching via
QuickMatch

Zachary Serlin, Brandon Sookraj, Calin Belta, and Roberto Tron

Boston University, Boston MA 02446, USA,
zserlin@bu.edu

Abstract. In this work, we present a novel solution and experimental
verification for the multi-image object matching problem. We first review
the QuickMatch algorithm for multi-image feature matching and then
show how it applies to an object matching test. The presented experiment
looks to match features across a large number of images and features
more often and accurately than standard techniques. This experiment
demonstrates the advantages of rapid multi-image matching, not only for
improving system performance, but also for use in new applications, such
as object discovery and localization.

Keywords: Computer vision, Feature matching, Object matching

1 Motivation

In this paper, we propose a solution to the following problem: given a set of
images taken from a team of robots (or camera network), match unique object
features, as they enter and exit the images from multiple perspectives. This
problem is fundamental to both computer vision and robotics applications, where
feature matching can be used in object detection, localization, and tracking [2,
22], homography estimation [16], structure from motion [7], and formation control
[11]. Solutions to this problem are traditionally computationally complex, and
often mismatch features when considering more than two images [2, 9]. Multi-
image correspondences allow for greater match reliability, and a more accurate
representation of objects in the universe. The proposed solution leverages a
relatively recent algorithm, QuickMatch [18], to quickly and reliably discover
correspondences across multiple images. The experiments presented in this paper
benchmark QuickMatch’s performance by implementing an object matching
framework under realistic conditions (i.e. images with clutter, repeated structures,
and poor image quality); a target object is matched across a network of cameras,
and then these matches are used to generate the target’s trajectory.

2 Problem Statement

Given a set of images I = {1, 2, . . . , i, . . . , N} and a set of Ki feature vectors, xik,
extracted from each image, determine matches (xi1k1

↔ xi2k2
: i1 6= i2) between

features from separate images, such that matched features represent the same
point in the scene.



2 Zachary Serlin et al.

3 Related Work

Feature matching is a basic process in many computer vision algorithms. Pairwise
matching is the classical approach to this task, where features between two images
are compared based on a distance metric (e.g. Euclidean or Manhattan distance),
and declared a match if this distance is below some threshold [9, 19]. This
method is used in two standard algorithms, Brute Force (BF) matching, and
Fast Library for Approximate Nearest Neighbors (FLANN) matching. Pairwise
matching has difficulties matching entities with repetitive structure or similar
appearance (e.g. windows) because the distance metric alone does not consider
the distinctiveness (smallest distance between features from the same image) of
the features. Including distinctiveness of features during matching has been shown
to be beneficial [9]. For multi-image matching, pairwise matches scale poorly with
the number of images and across multiple images, match correspondences often
do not belong to the same ground truth object. Graph matching has also been
used for pairwise matching. This approach attempts to match vertices (features)
and edges (matches) simultaneously to determine better pairwise matches [21],
but it cannot handle the multi-image setting.

Beyond pairwise matching, a number of other approaches exist for multi-
image matching (where multiple images are directly considered) that are based on
optimization, graphs, and clustering. Optimization based approaches are based
upon non-convex problems where optimization constraints must often be relaxed
to reliably obtain solutions [13, 21]. Moreover, these approaches require to know
a priori the number of objects, which is often not available, and do not consider
distinctiveness of the features. Cycles in graphs are early predecessors to the
QuickMatch algorithm and have largely been used to remove inconsistent matches
[8]. Clustering can be cast as finding clusters of similar features. Algorithms such
as k-means [10] and spectral clustering [12] have been explored to this end, but
also often require a predefined number of objects, and do not consider that a
unique feature only occurs once in an image.

QuickMatch uses density-based clustering algorithms [5, 20], which find clusters
by estimating a non-parametric density distribution of data [14]. These approaches
do not require prior knowledge of the number or shape of clusters, and can be
modified to include feature distinctiveness by construction. This paper is an
experimental extension of [18], where QuickMatch was initially introduced.

4 Contribution

The primary contribution of this paper is the testing and experimental validation
of the QuickMatch algorithm under more realistic conditions, as opposed to
previous evaluations using standard datasets. This experiment tests the algorithm
for computational efficiency and match accuracy by employing a distributed
camera network to localize a moving target.



Consistent Multi-Robot Object Matching 3

5 Technical Approach

A two-stage, offline, centralized solution is implemented on a system of distributed
ground robots and a central computer. Features are first extracted using off-the-
shelf feature extraction methods (SIFT), and the features are then matched using
the QuickMatch algorithm to find a given reference object. These matches are
used to perform homography estimation between the reference object and the
camera network to generate target trajectories.

5.1 Feature Extraction

Feature extraction aims to find and describe representative points from high
dimensional data, such as an image [1, 9, 22]. Features themselves are also high
dimensional vectors. In this experiment, the scale invariant feature transform
(SIFT) feature is used, which extracts Ki 128-dimensional vectors that represent
the appearance of each feature point. See [9, 19] for more details on this standard
feature extraction algorithm. Other feature types can be used and we also tested
with Oriented FAST and Rotated BRIEF (ORB) features and Speeded-Up Robust
Features (SURF), however SIFT was the most reliable.

5.2 QuickMatch

The QuickMatch algorithm is a density based clustering algorithm. It begins
by calculating the distance between all features (we use Euclidean distance in
our application). For each image, the minimum distance, σi, between any two
features is used as the distinctiveness of features for that image. Recall, from
above, xik is a point in the high dimensional feature space. The feature density
D(xik) is then calculated for each point using the formula

D(x) =

N∑
i=1

Ki∑
k=1

h(x, xik;σi), (1)

h(x1, x2;σ) = exp(−‖x1 − x2‖
2σ2

), (2)

with kernel function h, and distinctiveness σi. With this feature density, the
features are organized into a tree structure, with parent nodes being the nearest
neighbor with a higher density.

parent(xik) = arg min
i′k′∈J

d(xik, xi′k′), (3)

J = {i′k′ : k 6= k′, D(xi′k′) > D(xik)}. (4)

Edges are directed to parents along the gradient of feature density, and ultimately
toward the center of the parent cluster or to another distant cluster. Once the
tree has been constructed, edges are broken if either of two criteria are met; 1)
parent and child groups have nodes from the same image, or 2) the edge is larger



4 Zachary Serlin et al.

than a user defined threshold (ρ) times σi. This method results in a forest of
trees, where each tree is a cluster representing a unique entity in the universe. In
practice, each tree represents a point that is common among images, meaning
the algorithm discovers common features among very similar objects. Feature
discovery will be explored further in section 7.3, where groups of matching points
are organized into object detections and homography transformations.

5.3 Homography and Localization

An homography is a perspective transformation between the view points of two
images that can also be used to determine the relative position of an object given
a reference image. Given a reference viewpoint x̃, a new viewpoint can be found
given the homography matrix H as Hx̃. The H matrix can be estimated with a
set of known relative points (or matched features) between the two images. Once
H is estimated, it is possible to compare the position of objects in each image
in a relative coordinate system. To improve the estimate of H, random sample
consensus (RANSAC) is used to remove match outliers by randomly sampling
the matches, finding a fit of the data, and then removing any matches that fall
outside of a user defined region [16].

Using the homography transformations between each image and a target
reference image, the object can be localized up to a distance scale factor, as
shown in Fig. 1 (a). Given a known parameter of the target object, in this case
the object’s height, this ambiguity can be resolved, and the relative position can
be determined. When taken together with other cameras in the network and a
known global camera pose, the target object can be accurately positioned in the
global reference frame, allowing for generating a target’s trajectory (e.g., Fig. 4).

Homography and localization are limited by the reference images used for
matching, and are prone to noisy and inaccurate measurements. Firstly, the
system can only identify the known side of the object, unless the target is
symmetric. To overcome this, multiple reference target images are used here.
Secondly, inaccurate measurements in distance and bearing are common. These
inaccuracies arise from extreme sensitivity to object height estimate errors when
calculating target distance. To account for these errors in practice, multiple
measurements can be used to estimate each position, and then a filter can be
used to smooth the target’s trajectory.

6 Experiment

The experiment consists of a team of five iRobot Create2 ground robots, each with
a forward facing camera, distributed throughout the experimental area shown in
Fig. 1. Each camera has a 62◦ × 48◦ field of view, and takes a 640× 480px image
at 2 Hz. Through the center of the area, the target object is driven along the
trajectory shown in Fig. 1 (a) over approximately thirty seconds. All cameras
are triggered simultaneously and the images are sent to a central computer for
feature extraction and matching. The central computer has an Intel i7-7800x



Consistent Multi-Robot Object Matching 5

3.5GHz processor, and runs Ubuntu 16.04 LTS and ROS Kinetic. Features are
extracted using SIFT with an octave layer of 6, a contrast threshold of 0.10, an
edge threshold of 15, and sigma of 1.0. The matches from QuickMatch (using
ρ = 1.1) are used to determine which cameras observe the target object at
each time step, based on the number of matches with a target image (in this
experiment 10 matches are required). The matches between each reference images
and the current images are used to determine the homography between them,
using RANSAC with a threshold of 10.0. The homography is used to generate a
bounding box around the target object using a perspective transformation on
the target image corners. The relationship between pixel height of this box and
distance from the camera is calibrated beforehand using an object of known size
(in this experience a checkerboard pattern of know dimension). The localization
points are recorded to build a target trajectory, which is then compared to ground
truth measurements from an OptiTrack c© motion capture system (Fig. 1 (b)).

(a) (b)

Fig. 1: (a) Overhead view of experimental area with trajectory of the target
object, position of the robots, and the approximate field of view for the camera
network (shown in yellow). (b) Prospective view of experimental area with
modified iRobot Create2 platform, target object, and overhead OptiTrack c©

motion capture system.

7 Results

QuickMatch is evaluated in two ways: pure matching performance, and in the
context of a target localization application. The QuickMatch algorithm is first
compared to standard matching algorithms in the OpenCV Software Package
[2], Brute Force (BF), and FLANN. Both algorithms use the Euclidean distance
metric and a threshold match distance of 0.75 [2, 9]. Unlike QuickMatch, both
algorithms cannot consider matches across more than two images but do have
very low execution times.

QuickMatch is implemented in Python and takes 5.6 seconds to find matches
between 6254 SIFT features (from 115 images), while BF and FLANN are both



6 Zachary Serlin et al.

implemented in C++, and both take approximately 0.05 seconds to find the
matches between the reference image features, and the same 6254 features. This
time difference arises from two factors: the inherently slower runtime of Python
compared to C++ [4], and the extra comparisons done by QuickMatch to solve
the entire Multi-match problem. If BF and FLANN compared all images with all
other images combinatorially (as QuickMatch implicitly does) their computation
times would be ∼ 5.75s seconds, which is comparable to QuickMatch’s slower
Python implementation. This time also does not account for the post processing
time necessary to reconcile inconsistent matches from both BF and FLANN, is
not required in QuickMatch.

7.1 Precision Versus Recall

Although QuickMatch is slower, it outperforms both BF and FLANN in the
number of matches correctly found, and generally in terms of precision vs. recall
(PR) and precision-recall area under the curve (PR AUC), which are common
metrics for evaluating matching algorithms [17]. Fig. 2 (a) shows the precision
(fraction of correctly matched images) versus recall (fraction of possible matches
found) curves for QuickMatch, BF, and FLANN. For any recall level, QuickMatch
maintains a higher precision level than either BF or FLANN. These curves are non-
monotonic because mismatched features appear at a higher rate than correctly
matched features at higher thresholds. PR AUC is a threshold agnostic metric
used for comparing overall performance of matching algorithms [17]. In terms of
PR AUC, QuickMatch achieves 0.64, while BF and FLANN reach 0.49 and 0.45
respectively. The overall increase in precision stems for QuickMatch’s ability to
consider more instances of the reference object, by matching cycles of features
across multiple images. It is therefore able to find the reference object not only
more consistently, but with many more matched features. An example of these
matches is shown in Fig. 3.

(a)

Fig. 2: (a) Precision vs. recall curves for the QuickMatch, Brute Force, and
FLANN algorithms. All algorithms are run on the same feature vectors. A match
is considered to exist if the number of matched features is above a threshold.



Consistent Multi-Robot Object Matching 7

(a) (b)

Fig. 3: (a) Example image matches between the reference object image (left)
and an experimental image (right): Circles represent features, and lines indicate
matches. (b) Homography and localization of car with prospective transform of
bounding box.

7.2 Homography and Localization

In order to further demonstrate the utility of the QuickMatch algorithm, matches
were used to localize a target object in relation to the camera network, and then
estimate its global trajectory. This was done using all three above algorithms
with again an identical set of SIFT features. QuickMatch considers multi-image
matches between the set of target images and the set of five robot images at
each time step, while BF and FLANN consider matches between each target
image and the robot image individually. Once feature matches are generated,
RANSAC is used to estimate the homography matrix H for each pair of images
while also removing outliers from the matches. The homography between the
reference image and each robot image is used to generate a bounding box around
the target in the robot image as shown in Fig. 3 (b). This bounding box, given
a known camera calibration, provides bearing and height information for the
target. The target height is known and is used to find the relate distance to the
target with the bounding box height. With these two values, a distance and a
bearing, the object can be localized with respect to each robot.

The above steps are performed using the match data from each of the three
above algorithms. Figures 4 (a-c) show the results of the localization estimation
for each algorithm. Red points are estimate target poses for each time step,
blue points denote the ground truth measurements, black octagons are the
camera network positions, and the green regions are the one standard deviation
error between all localization estimates at each time step. The localization error
was found by taking the absolute distance between the estimated and ground
truth position at each time step. QuickMatch had an error of 0.2118 ± 0.4254
meters, BF had an error of 0.2349± 0.4027 meters, and FLANN had an error
of 0.6232 ± 1.1722 meters. QuickMatch outperforms both BF and FLANN in
terms of accuracy, which is indicative of its higher match quality. BF matcher
also performs well and maintains a low variance, however it is not as accurate.
FLANN is the worst performing of the three, and has a number of extremely



8 Zachary Serlin et al.

(a) (b)

(c) (d)

Fig. 4: (a) QuickMatch trajectory estimate. (b) BruteForce trajectory estimate. (c)
FLANN trajectory estimate. (d) Histogram of estimate error for each algorithm.

erroneous estimates. Generally, monocular camera distance measurements are
very sensitive to match errors, meaning target localization error is an indirect
method for testing the overall accuracy of each method. Figure 4 (d) shows a
histogram of the localization error, which is found by comparing the localization
estimate to the ground truth pose at each time step. The histogram makes it clear
that QuickMatch maintains a higher number of accurate matches and has a small
number of highly erroneous estimates. In practical applications, a Kalman filter
would be employed to smooth the estimates, but the values are left unaltered
here to demonstrate the algorithm’s output.

7.3 Feature Discovery

The QuickMatch algorithm implicitly discovers common features among images
by creating clusters of similar features. These clusters correspond to specific
locations in the universe, and therefore can be used to find both targets and
landmarks across images. Landmarks, although not used in this paper, are points
that occur commonly across all images (except when occluded), and are useful
for multi-agent localization tasks. In the images collected, landmarks were the



Consistent Multi-Robot Object Matching 9

clusters with the largest number of features, because many of this images did not
contain the target object. An example landmark cluster is shown in Fig. 5 (a).
Features belonging to the target object are generally smaller than the landmark
clusters, but can still be extracted, and show key features of the target. Figure
5 (b) shows one such cluster, which is the front hood of the car model. Feature
discovery is one attribute of QuickMatch that does not exist in either BF or
FLANN and can be useful for discerning what features are most descriptive of
images from the network.

(a)

(b)

Fig. 5: (a) Landmark feature cluster. (b) Target feature cluster.

8 Conclusion

This experiment highlights the utility of QuickMatch multi-image matching
for object matching. QuickMatch is able to find many more object feature
matches than standard methods by considering matches across all images, not
just pairwise matches. The presented experiment tests the QuickMatch algorithm
in an experimental setting with realistic conditions, and shows that multi-image
matching is superior to standard methods at matching the reference object (even
as it enters and exits images across the entire camera network). Quickmatch
is also tested with a target object localization and again outperforms both the
BF and FLANN algorithms. Beyond testing Quickmatch, this experiment also
demonstrates its feature discovery ability by showing a characteristic landmark
and target feature cluster from the test images. This approach is the precursor
to an online, distributed, and decentralized approach. Our future work will focus
on a distributed version of object discovery and localization and multi-camera
homography. We also plan to use these extracted trajectories for higher level
tasks. Overall, QuickMatch is shown to be a versatile multi-feature matching
algorithm that outperforms standard pairwise matching algorithms.

9 Acknowledgements

This work was supported by the National Science Foundation under grants
NRI-1734454, and IIS-1717656.



10 Zachary Serlin et al.

References

1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speededup robust features (SURF).
Computer Vision and Image Understanding, 110(3):346359, 2008.

2. Bradski, G.: The OpenCV Library. Dr. Dobbs Journal of Software Tools, 2000.
3. Dollar P., Zitnick, C.L.: Structured forests for fast edge detection. In International

Conference on Computer Vision, 2013.
4. Fourment, M., Gillings, M.: A comparison of common programming languages used

in bioinformatics. BMC Bioinformatics, vol. 9, p. 82, Feb 2008.
5. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function,

with applications in pattern recognition. IEEE Transactions on Information Theory,
21(1):3240, 1975.

6. Hariharan, B., Arbelaez, P., Girshick, R., Malik, J.: Hyper-columns for object
segmentation and fine-grained localization. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition, 2004.

8. Huang, Q., Guibas, L.: Consistent shape maps via semidefinite programming. Com-
puter Graphics Forum, 32(5):177-186, 2013.

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91110, 2004.

10. MacKay, D.J.: Information theory, inference and learning algorithms. Cambridge
university press, 2003.

11. Montijano, E., Cristofalo, E., Zhou, D., Schwager, M., Sagues, C.: Vision-based
Distributed Formation Control without an External Positioning System. IEEE
Transactions on Robotics, vol. 32, no. 2, pp. 339-351, April 2016.

12. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm.
Neural Information Processing Systems, 2:849856, 2002.

13. Oliveira, R., Costeira, J., Xavier, J.: Optimal point correspondence through the
use of rank constraints. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 10161021, 2005.

14. Parzen, E.: On estimation of a probability density function and mode. The annals
of mathematical statistics, 33(3):1065 1076, 1962.

15. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function.
The Annals of Mathematical Statistics, 27(3):832837, 1956.

16. Szeliski, R.: Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

17. Ting, K.M.: Precision and Recall. In: Sammut C., Webb G.I. (eds) Encyclopedia of
Machine Learning. Springer, Boston, MA, 2011.

18. Tron, R., Zhou, X., Esteves, C., Daniilidis, K.: Fast Multi-Image Matching via
Density-Based Clustering. In: The IEEE International Conference on Computer
Vision, 2017

19. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms. http: //www.vlfeat.org/, 2008.

20. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In IEEE
European Conference on Computer Vision, pages 705718. Springer, 2008.

21. Yan, J., Cho, M., Zha, H., Yang, X., Chu, S.: Multi-graph matching via affinity op-
timization with graduated consistency regularization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015.

22. Zhou, X., Zhu, M., Daniilidis, K.: Multi-Image Matching via Fast Alternating
Minimization. In: The IEEE International Conference on Computer Vision, 2015


